1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
| #include <iostream> #include<opencv2/opencv.hpp>
using namespace cv; using namespace std;
class Flitter { private:
public: double generate_gause_noise(double mu, double sigma) { const double epsilon = numeric_limits<double>::min(); static double z0, z1; static bool flag = false; flag = !flag; if (!flag) return z1 * sigma + mu; double u1, u2; do { u1 = rand() * (1.0 / RAND_MAX); u2 = rand() * (1.0 / RAND_MAX); } while (u1 <= epsilon); z0 = sqrt(-2.0*log(u1))*cos(2 * CV_PI*u2); z1 = sqrt(-2.0*log(u1))*sin(2 * CV_PI*u2); return z0*sigma + mu; }
void add_gause_noise(Mat& image) { int channels = image.channels(); int rowsNumber = image.rows; int colsNumber = image.cols*channels; if (image.isContinuous()) { colsNumber *= rowsNumber; rowsNumber = 1; } for (int i = 0; i < rowsNumber; i++) { for (int j = 0; j < colsNumber; j++) { int val = image.ptr<uchar>(i)[j] + generate_gause_noise(3, 0.8) * 32; if (val < 0) val = 0; if (val>255) val = 255; image.ptr<uchar>(i)[j] = (uchar)val; } } } void add_salt_noise(Mat& image, int n) { for (int k = 0; k < n; k++) { int i = rand() % image.cols; int j = rand() % image.rows; if (image.type() == CV_8UC1) { image.at<uchar>(j, i) = 255; } else if (image.type() == CV_8UC3) { image.at<cv::Vec3b>(j, i)[0] = 255; image.at<cv::Vec3b>(j, i)[1] = 255; image.at<cv::Vec3b>(j, i)[2] = 255; } } for (int k = 0; k < n; k++) { int i = rand() % image.cols; int j = rand() % image.rows; if (image.type() == CV_8UC1) { image.at<uchar>(j, i) = 0; } else if (image.type() == CV_8UC3) { image.at<cv::Vec3b>(j, i)[0] = 0; image.at<cv::Vec3b>(j, i)[1] = 0; image.at<cv::Vec3b>(j, i)[2] = 0; } } }
void median_flitter(Mat& src, int win_size) { int rows = src.rows, cols = src.cols; int start = win_size/2; for (int m = start; m <rows - start; m++) { for (int n = start; n < cols - start; n++) { vector<uchar> model; for (int i = -start + m; i <= start + m; i++) { for (int j = -start + n; j <= start + n; j++) { model.push_back(src.at<uchar>(i, j)); } } sort(model.begin(), model.end()); src.at<uchar>(m, n) = model[win_size*win_size/2]; } } } void mean_flitter(Mat& src, int win_size) { int rows = src.rows, cols = src.cols; int start = win_size / 2; for (int m = start; m <rows - start; m++) { for (int n = start; n < cols - start; n++) { int sum = 0; for (int i = -start + m; i <= start + m; i++) { for (int j = -start + n; j <= start + n; j++) { sum += src.at<uchar>(i, j); } } src.at<uchar>(m, n) = uchar(sum / win_size / win_size); } } }
vector<vector<float>> gause_template(float sigma, int size) { int xcore = size / 2, ycore = size / 2; vector<vector<float>> res; float base = 1.0 / 2 / CV_PI / sigma / sigma; for (int x = 0; x < size; x++) { vector<float>v; for (int y = 0; y < size; y++) { float t1 = (pow(x - xcore, 2) + pow(y - ycore, 2)) / 2.0 / sigma / sigma; float temp = base*exp(-t1); v.push_back(temp); } res.push_back(v); } return res; }
void gause_filter(Mat& src, float sigma, int size) { vector<vector<float>> gaussTem = gause_template(sigma,size); int rows = src.rows, cols = src.cols; int start = size / 2; for (int m = start; m <rows - start; m++) { for (int n = start; n < cols - start; n++) { float sum = 0; for (int i = -start + m; i <= start + m; i++) { for (int j = -start + n; j <= start + n; j++) { sum += src.at<uchar>(i, j)*gaussTem[i-m+start][j-n+start]; } } src.at<uchar>(m, n) = uchar(sum); } } } };
int main() { Flitter my_flitter; Mat src = imread("./luna.jpg"); cvtColor(src, src,COLOR_BGR2GRAY); imshow("灰度处理过的原始图像", src);
{ Mat src_add_salt_noise; src.convertTo(src_add_salt_noise, CV_8UC1); my_flitter.add_salt_noise(src_add_salt_noise, 3000); imshow("添加椒盐噪声", src_add_salt_noise);
Mat Trans_Median = src_add_salt_noise.clone(); my_flitter.median_flitter(Trans_Median,3); imshow("椒盐噪声——中值滤波", Trans_Median);
Mat Trans_Mean = src_add_salt_noise.clone(); my_flitter.mean_flitter(Trans_Mean, 3); imshow("椒盐噪声——均值滤波", Trans_Mean);
float sigma = 0.84089642; int size = 7; vector<vector<float>> gaussTem = my_flitter.gause_template(1, 3); for (auto num : gaussTem) { for (auto c : num) { cout << setprecision(8) << std::fixed << c << setw(11); } cout << endl; cout << endl; } Mat Trans_Gause = src_add_salt_noise.clone(); my_flitter.gause_filter(Trans_Gause, 0.8, 3); imshow("椒盐噪声——高斯滤波 Sigma=1", Trans_Gause); }
{ Mat src_add_gause_noise; src.convertTo(src_add_gause_noise, CV_8UC1); my_flitter.add_gause_noise(src_add_gause_noise); imshow("添加高斯噪声", src_add_gause_noise);
Mat Trans_Median = src_add_gause_noise.clone(); my_flitter.median_flitter(Trans_Median,3); imshow("高斯噪声——中值滤波", Trans_Median);
Mat Trans_Mean = src_add_gause_noise.clone(); my_flitter.mean_flitter(Trans_Mean, 3); imshow("高斯噪声——均值滤波", Trans_Mean);
float sigma = 0.84089642; int size = 7; vector<vector<float>> gaussTem = my_flitter.gause_template(1, 3); for (auto num : gaussTem) { for (auto c : num) { cout << setprecision(8) << std::fixed << c << setw(11); } cout << endl; cout << endl; } Mat Trans_Gause = src_add_gause_noise.clone(); my_flitter.gause_filter(Trans_Gause, 0.8, 3); imshow("高斯噪声——高斯滤波 Sigma=1", Trans_Gause); }
{ Mat src_add_salt_and_gause_noise; src.convertTo(src_add_salt_and_gause_noise, CV_8UC1); my_flitter.add_salt_noise(src_add_salt_and_gause_noise, 3000); my_flitter.add_gause_noise(src_add_salt_and_gause_noise); imshow("添加椒盐+高斯噪声", src_add_salt_and_gause_noise);
Mat Trans_Median = src_add_salt_and_gause_noise.clone(); my_flitter.median_flitter(Trans_Median,3); imshow("椒盐+高斯噪声——中值滤波", Trans_Median);
Mat Trans_Mean = src_add_salt_and_gause_noise.clone(); my_flitter.mean_flitter(Trans_Mean, 3); imshow("椒盐+高斯噪声——均值滤波", Trans_Mean);
float sigma = 0.84089642; int size = 7; vector<vector<float>> gaussTem = my_flitter.gause_template(1, 3); for (auto num : gaussTem) { for (auto c : num) { cout << setprecision(8) << std::fixed << c << setw(11); } cout << endl; cout << endl; } Mat Trans_Gause = src_add_salt_and_gause_noise.clone(); my_flitter.gause_filter(Trans_Gause, 0.8, 3); imshow("椒盐+高斯噪声——高斯滤波 Sigma=1", Trans_Gause); }
waitKey(); return 0; }
|